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1. INTRODUCHON

Attempts to establish the relationship between mechanical measurements and gun performances

have made steady progress in the past 5 years"'. Early work revealed that conventional mechanical

parameters did not relate well to fracture susceptibility. The search for a simple mechanical

parameter that could measure the propensity of a propellant to generate surface area upon mechanical

failure resulted in the development of a failure parameter called the failure modulus4 , E. that

measures the rate at which the material strength is lost as a function of strain, after failure has

occurred. This parameter has been used as a guide in the development of new propellants to ensure

that improvements in formulation and processing did not degrade the mechanical response charac-

teristics of the material, which could result in poor performance and increased vulnerability response.

This parameter has also been successfully used to evaluate the relative fracture susceptibility among

several propellant lots or between unconditioned propellant and propellant that has been subjected

to conditioning, such as thermal cycling, that may affect its mechanical response.

This parameter showed indications of direct usefulness when the changes of the vulnerability

response related directly to the changes measured in this failure parameter3 . The correlation was

found for propellant beds at low temperature subject to a shaped charge jet attack and led to other

studies that attempted to make the correlation more direct. However, the relationship was made

between changes in both responses, rather than directly relating the responses themselves.

In this study, a direct link between this parameter and a measure of the amount of fracture-

generated surface area produced during uniaxially compression is made for M30 propellant.

Measurement of the failure modulus was made on the grains, and enough grains were damaged so

that closed bomb firings could be made to determine how the grain damage affects the pressure

generation under ballistic pressures. A small (21 cc) closed bomb was used so that large numbers

of grains did not have to be damaged to reach gun-like pressures in the closed vessel. After the

burning rate using undamaged grains was established, the pressure-time curves from the damaged

propellant were analyzed for surface area. Many attempts were made to establish a method for

analyzing the closed bomb data. As proper considerations became clearer, modifications of the

analysis were made, which resulted in a method that relates the augmentation of pressure generation

to the failure modulus and the level of strain suffered by the M30 propellant.

The question of the use of uniaxial response measurements to link a mechanical parameter of a

propellant grain to the aggregate behavior within gun systems must be addressed. Certainly, the

system is complex and the system elements are nonlinear. The success of linking a simple testing
1



kw,, Table 1. M30 Nominal Percent Composition

Coouen Percent Comngsition

Nitrocellulose (NC) 28
NC Nitration Level 12.6

Nitroglycerin (NG) 22
Nitroguanidine (NQ) 48
Ethyl Centralite (EC) 2

Figure 1. Servohydraulic Tester

procedure to a complex event will depend upon the ability to extract from the uniaxial response an
essential indicator of fracture behavior within the system. As of yet, this has not been demonstrated.
However, indications are from the examples cited above that the propellant response seems robust
enough to provide some guidance for using these measurements as such an indicator. Attempts are
under way to link the grain and aggregate mechanical response in a way to predict bed behavior from
grain response and size. As more information is extracted from the response measurements, the

ability to predict will become clearer.

2. EXPERIMENTAL PROCEDURE

2.1 Mechanical Rspgnse Measuement The propellant response was measured using a specially
designed servohydraulic tester5 , illustrated in Figure 1. The machine allows for compression
measurements to be performed at rates as great as 1000 s"* for a specimen with a nominal length of
1 cm. Compression is arrested when contact occurs between the impact bell and cone. Therefore,
the amount of specimen compression can be accurately predetermined by setting the anvil height.

This contact between bell and cone not only stops the specimen compression, but it also shunts the
force around the specimen. The nitrogen spring absorbs the decelerating force of the massive ramand
and extends its duration. The force applied to the specimen is measured using the gauge inside the
impact bell. During compressive response measurements, displacement is measured with a linear
variable differential transformer (LVDT) in the actuator column and is corrected for machine

stiffness.

The specimens were prepared from multiperforated M30 gun propellant grains whose formula-
tion is listed in Table 1. Specimen preparation procedure began by cutting the sample with a diamond

saw to a length of 1.00 cm. The ends were cut flat, parallel and perpendicular to the grain axis
according to the specifications in a proposed NATO draft Standard Agreement entitled "Uniaxial

2



Compressive Test," which is an updated version of asUN,, ft

of the test entitled "Uniaxial Compressive Gun IGO m Fuhw Mod"

Propellant Test" in the Chemical Propulsion In-

formation Agency Publication 21. Temperature

conditioning was achieved by placing prepared so

grains inside the environmental chamber for a 1131
time at least twice that needed to reach thermal

equilibrium (30 minutes in most cases). The

specimen was then placed on the anvil and tested. S.A 10.0 15.0

This testing took place within the conditioning Strain (Pct)

chamber, so no transfer was required, and there- Figure 2. Mechanical

fore, no thermal disruption occurred. Characterization Parameters

The final strain to which the specimen was taken was determined by the distance between the

anvil and the force gauge when the bell and cone surfaces were mated. That distance was determined

by placing a lead specimen on the anvil and performing a compression. This allowed for any dynamic

effects to be taken into account that may have been overlooked in a static measurement. The

percentage strain used in these tests was selected to be 50%, 20%, and 10%. From previous testing,

it is known that failure of the grain occurs between 3% and 5%, depending upon strain rate and

temperature.

The parameters measured in a response characterization test are the modulus, maximum stress,

strain at maximum stress, stress at failure, strain at failure, and failure modulus. These parameters

are illustrated in Figure 2. The failure modulus is the slope of the stress-strain curve in the near linear

region between strain at maximum stress, and twice that value. If no maximum stress occurs in the

region of failure, the failure modulus is measured between the strain at failure and three times that

value. Measurement of the failure modulus was made at -400C, -200C, 00C, 200C, 400C, and 600C,

and the reported values were determined from the average of five response curves. The specimen

strain rate was chosen to be 100 s-1, which is the order of strain rate encountered by the grains during

a normal ballistic firing.

2.2 Fracture-Generated Surface Area Measurement The grains that were damaged by uniaxial

compression, as outlined above, were burned in a mini-closed bomb (MCB) to determine the effect

that the mechanical damage had on the pressure generation of the propellant. The MCB is a special,

small volume closed bomb6. The rate of pressurization during combustion is controlled by the

3



intrinsic burning rate of the propellant and the surface area exposed to the flame. This enables the

surface area to be determined once the burning rate of the propellant has been established.

Undamaged specimens were burned in the MCB at the same loading density that was used in the

damaged grain firings. These pressure-time traces were analyzed using the closed bomb reduction

code BRLCB 1 to establish the burning rates for the M30 propellant for these tests. Once established,

the surface area from all the pressure-time histories can be determined using the same code. The

output from the code provides pressure in MPa and the corresponding surface area in square

centimeters. This output was converted to intrinsic parameters of fraction burned and surface area

ratio (S/So), respectively, by dividing the pressure by the maximum pressure and the surface area by

the initial surface area of the undamaged grain. This permitted closed bomb runs with different

charges, pressures, etc., to be compared.

2.3 Details of the Experiment Enough grains were damaged to provide two or three closed bomb

firings for each temperature-strain condition. Initial tests done at 50% strain had three repetitions

performed. Indications from that set of tests were that two closed bomb firings could be performed

with reasonable assurance of agreement. If results varied significantly, subsequent tests were

performed to resolve the differences. With six temperatures and three end-strain conditions, a total

of 46 closed bomb tests were conducted. These included some instances when more that three firings

were performed to verify the repeatability of the process.

3. RESULTS

The uniaxial compressive mechanical response of M30 propellant is shown in the stress vs. strain

curves presented in Figure 3. From these curves, the failure modulus was calculated as outlined

above. The resulting values of failure modulus are shown in Figure 4 in which the natural logarithm

(in) of these values is plotted against temperature to show the nature of the response. From these

plots, the indication is that fracture becomes rapidly more significant at lower temperatures. This was

confirmed by the physical appearance of the grains after testing. Figure 5 shows typical 50% strain

specimens after uniaxial compression. The failure modulus values reflected the increase in fracture

observed in the tested specimens, but more importantly, Ef quantified it. This observation prompted

the application of this parameter to the characterization of the effect that damage has on the burning

of propellant.

For each closed bomb firing, a surface area ratio vs. fraction burned plot was obtained, as

described above, which reflected the amount of surface area available to the flame throughout the
4
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Figure 6. Theoretical and Undamaged Values Figure 7. Surface Area Profiles for Propellant

of the Surface Area Ratio vs. Fraction Burned Damaged at 50% Strain

propellant combustion. Figure 6 shows the theoretical and typical experimental values for the surface

area ratio vs. fraction burned for undamaged grains. Note that as the seven-perforated grains burned,

the surface area increased. This area profile is required to provide the gun with the designed

performance. Any deviation from this profile changes the performance. In cases of grain fracture,

the performance is almost always reduced and, in cases of extensive damage, can produce

catastrophic gun failure. The surface area profiles shown in Figure 7 show how temperature and

strain combine to change the pressure generation because of damaged grains. These deviations from

the profile required for efficient gun firing are significant and would cause large pressure variations

within the gun. The profiles for each condition were analyzed using the procedure outlined below.

4. ANALYSIS

4.1 Statement of the Problem Many attempts were made to associate the surface area curves

obtained from the closed born1 results to the failure modulus. In the first attempt, the intercept of

the initial values of S/So was used and difficulty was found with the values determined from this

approach. Figure 8a illustrates the problem. Here, the intercept of the initial values is shown for two

curves that were obtained under drastically different conditions. The curves show that brittle fracture

occurred in each case, but the extent of the fracture in the 10% strain test was initially much worse

than for the other condition. However, fracture was arrested when compression stopped at 10%. This

resulted in many finely fractured particles, because of the increased brittleness at -40*C and a large

surface area. However, after the initial burning of the fine particles, the remaining particles had much

6
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Figure 8. S/So vs. Fraction Burned for Grains Damaged under Different Conditions

less surface area to present to the flame, and the surface area dropped to significantly lower values

at a low fraction burned. The fracture that occurred at 00C projected the same initial surface area

value, but much more extensive damage occurred because of the larger end strain. A much larger

mass of finely fractured particles continued to burn rapidly until almost 10% of the charge was

consumed. This condition represents a much more rapid rise in pressure and a much greater deviation

in the designed surface area profile. A simple method of accounting for the extent of fracture damage

needed to be incorporated into the analysis if it was to reflect not only the initial value of the additional

fracture-generated surface area, but also the mass and distribution of the fractured particles.

If information outlined above could be reliably extracted from the individual S/So vs. fraction

burned curves, then a link could be established to ballistic performance. Many attempts were tried:

curve averaging, a comparison of areas under curves to a certain fraction burned, shifting of curves

to match minimum surface area values, primary and secondary S/S0 curve intercepts, and several

other methods. Some of these methods worked well for a particular set of conditions (e.g., constant

temperature, or constant end-strain) but failed when applied to the general set of fracture conditions.

Much work, which is not detailed here, was done to develop a simple procedure for data analysis.

The method that seemed to best characterize the deviation reflected in the curves and was still simple

enough to be applied easily is described below.

7



4.2 Method of Analysis As explained above, the initial amount of surface area present is

important, and the extent to which that surface area continues to be maintained while the propellant

burns is at least as important. It would be desirable to incorporate into a single set of quantitative

numbers the degree of pressure generation deviation that can be expected because of fracture

damage. To date, the method that best exhibits this information for the conditions used in these tests

is to fit the points, to 10% fraction burned, of the S/S0 vs. fraction burned curve to a least squares fit.

If this is performed on the curves in Figure 8a, the intercepts shown in Figure 8b result. Note that

the intercept values and the slopes of the curves now seem to reflect a more accurate representation

of the effect that the available surface area had on pressure generation.

There are several reasons why this approach reflects critical aspects of pressure generation within

the gun. First, the conditions during which significant deviations from planned pressure generation

within guns occurare established very early in the ballistic cycle. Thus, it makes sense to use only

the information contained in the early burning of the charge, i.e., the first 10%. If surface area

variances begin to occur later in the cycle, the performance will be affected, but the chamber volume

has increased significantly and is continuing to rapidly expand so that excess pressurization is more

difficult to generate than at earlier times. Next, this method also increases the number of points that

determine the value to be used to characterize the increased surface area. Those familiar with closed

bomb analysis know that the most uncertain values generated in the process are those obtained at low

fraction burned. This method of curve fitting eliminates the dependence of the values obtained from

being determined by a only few points that lie within the early, uncertain region of fraction burned.

However, this early combustion region still is able to influence the parameter values. Finally, by

incorporating the points at higher fraction burned (i.e., As great as 10%) the degree by which the

fracture-generated surface area is maintained is also taken into account. All these features are

exhibited in the examples shown in Figure 8.

4.3 Results of Analysis The above analysis procedure was applied to each of the closed bomb

data sets. However, to provide equal weight to each portion of the curve between the points being

fit, values of SiS. were calculated at equal intervals of fraction burned, i.e., AFB = 0.02, based on an

interpolation between nearest data points. This was necessary because at high surface area, more

propellant is consumed per time interval. This resulted in larger fraction burned intervals at lower

fraction burned, or a greater density of points within the curve at higher fraction burned. This higher

density skewed the weighting of the fitted curve. This procedure also facilitated curve averaging.

The specific surface area at each fraction burned for each curve, at the same end-strain and

temperature condition, was averaged between the maximum value of S/S0 and the value of S/So at

8



0.10 fraction burned. This produced an average

curve for that testing temperature and end strain a • vc
combination. These average curves and the 4 oMc

W -c

associated least squares fit straight line appear in o
100.

Figure 9. The intercept and slope values for these ,

lines appearm nTable2along withthecorre-

sponding values of the failure modulus.

If these intercept and slope values are plotted am o &1o w

against the logarithm of the failure modulus for Fraction Buned

each of the end-strain levels, and a linear least a. 50% End Strain
I0,

squares fit is made to the points, the curves in

Figure 10 result The curves form a series that

can be related to the end-strain level by setting 0 4 c

the constants and coefficients in the fitting equa- 19 61
a • -WC

tions to be functions of the end strain. This is 4,

done in Figure 11, which shows that the depen- -

dence of the fitting parameters on the strain l 2 . A.

appears to be linear. If the equations shown in

Figure 1 la are substituted into the relationships ® . 0.06 0.06 0.10 0.12
Fraction Burned

developed in Figure 1Oa, the S/So curve intercept b. 20% End Strain

can be represented by
10

Si/So (e, Ed) = -1.84 + 0.361 £ +

(0.392 + 0.116 e) In E,, (1) a

which can be u -, d to predict values of effective 1 6• .020c

ini"-al surface area ratio, given the measured i ", a
4a

failure modulus and the strain.

A similar result can be obtained for the slope M

of the S/So vs. fraction burned curves. These 0
0.00 0.02 0.04 0.06 0.06 0.10 0.12

values also appear in Table 2 and are plotted in Fraction Burned

Figure 1 lb. When the same operation is per- c. 10% End Strain

formed on the constants and coefficients of the Figure 9. Average S/So vs. Fraction Burned

equations in Figure 10b, the coefficient of the Curves with Least Squared Best Fit Lines
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Table 2. Average Values of Failure and Surface Area Ratio Parameters

Averp SIS, hammre Ava-e Slope
Tompeltwe Failure Ln (E9) 50% 20% 10% 50% 20% 10%

Moduhu (E,)
(C) (GPS)

60.0 0.13 -2.040 3.57 - - -16.5 - -

40.0 0.24 -1.427 5.82 - 42 .5-
20.0 0.26 -1.347 5.88 1.26 - -35.0 -2.9

0.0 0.53 -0.635 16.80 6.33 0.67 -157 -66.4 1A.

-20.0 1.74 0.554 17.90 7.37 1.20 -166 -74.1 -3.22

-40.0 12.90 2.557 31.80 12.94 5AI -310 -131.2 -52.6

40.1D

30% 0 1S 6-7A

320' 20% y1O
100

010 * lY'n ]y= 60.46- Aft

-3 .2 10 0 2 3-

Ln[Failure Modulus (GPa)O Ln[Fallure Modulus (GPO)J

a. Surface Area Ratio Intercept b. Coefficient of Fraction Burned (Slope)

Figure 10. Least Squares Fit Parameters vs. Ln of the Failure Modulus
of S/S0 vs. Fraction Burned for Each Strain

effective surface area curve can be found by placing the appropriate end-strain and failure modulus

values in the following equation:

Slope (e, Ed) = 20.6 - 3.40 e - (5.71 + 1.18 ) In E,. (2)

These two equations can be combined to produce Lot effective surface area profile vs. fraction

burned (usually designated asZ) for the first 10% of the fraction burned. This equation appears below:

SISo (e, Ef, Z) = Siso (e, Ed) + Slope (e, Ed) Z
= -1.84 + 0.361 e +(0.392 + 0.116 e) In Ef +

[20.6 - 3.40 e - (5.71 + 1.18 ) In Ej] Z. (3)

10
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a. S/So Intercept b. Slope of S/So vs. Fraction Burned

Figure 11. Parameters from Fitting Equations in Figure 10 vs. End Strain

The domain over which these relationships can be expected to apply extends a little beyond the

corresponding values for e and E, for which intercept and slope have been determined in Table 2. The

limiting influence is the inability to detect fracture at combinations of low strain and low failure

modulus values. There is a greater likelihood of valid results from calculations outside this domain

for higher values of e and Er

5. DISCUSSION

5.1 Use of Equations The above equations can be used for several purposes. As stated, if the

stress state of the propellant is known and the failure modulus has been measured, then the effect of

the initial surface area can be evaluated. The effects of the augmented surface area on combustion

for the first 10% of fraction burned can be evaluated by using Equation 3 to predict an effective

surface area profile during the early combustion. The prediction may not, however, show the

dynamic surface area profile that could affect the generation and propagation of pressure waves

within the gun chamber, but it should provide a more accurate assessment of the pressures generated.

Another use of these equations could be to predict when conditions indicate that the fracture-

generated surface may become a significant problem. The time-temperature equivalence of M30 and

other propellants has been established'0 over the temperature range of ballistic interest and has been

related to the strain rate for more than four orders of magnitude". Using this information, one can

predict the strain state of a propellant for a certain strain rate deformation at a particular temperature.

In the referenced studies, it was shown that the time-temperature equivalency could be extended to
11



predict the failure modulus, as well. This allows for an estimate of the degree of damage and its effect

on combustion for a wide variety of conditions, even those outside the area of possible physical

measurement. If ballistic codes are used to show when certain surface area profiles subject a system

to unacceptable performance, these equations can be used with the appropriate mechanical response

parameters to predict when and where these conditions are likely to arise.

Other uses will become evident as the application or problem becomes more well defined. For

a long time, the modeling community has had to rely on relatively arbitrary surface area augmentation

algorithms. Now, for the first time, a method is available that relates a relatively easily determined

mechanical parameter to a surface area profile during the early phase of combustion.

5.2 Observations from Low Fracture lts The experimental results for conditions in which

the early grain deformation did not produce evidence of significant fracture during the early fraction

burned were not included in the determination of the above equations. There were five such

conditions and they are indicated by dashes in Table 2. However, those results did reveal interesting

surface area profiles that were consistent with the data thus far reported and offer additional insight

about the fracture process within the grains. The profiles that correspond to those five conditions,

plus one other profile (20*C and 20% end strain) are shown in Figure 12.

At higher temperatures and lower end strains, most of the deformation is plastic. This is reflected

in Figure 12a by surface area values that are smaller than for undamaged grains. This type of surface
area reduction has been observed in JA2 propellant that was un;axially deformed in a completely
plastic manner". It is caused by the change of grain dimensions during propellant flow that resulted
in less surfacebeing made available to the flame. This can occur by an outright reduction in surface

area or by perforations becoming blocked or pinched, thereby delaying the introduction of flame to

that portion of the grain. Either mechanism reduces the progressivity of the grain. The profiles in
this figure are for the 10% end-strain condition and at 600C and 400C, appear about the same.

However, the 20°C profile shows a slightly higher profile for low fraction burned and lower
progressivity as burning proceeded. This indicated that while plastic deformation was still the

predominant failure mechanism, failure by fracture was beginning to influence the profile.

This is demonstrated more clearly in the 20% end-strain profiles in Figure 12b. Here, the loss

of progressivity and the increase in available surface area (at 20% fraction burned) was marked. The
onset of brittle fracture is indicated at 200C by the large initial surface area, but the amount of

fractured material was small as indicated by the immediate decrease in area. These three curves show
that even though a large amount of fracture-generated surface area was not initially available to the
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Figure 12. Surface Area vs. Fraction Burned for M30 Propellant with Low Fracture Response

flame, fracture surface area soon became avail-

able as combustion proceeded. This can occur

through crack precursors creating cracks or the

uncovering of existing fracture-damaged regions

within the grain as the grain burms. In either case,

the degree of fracture-related damage was in-

creasing as temperature decreased and end strain

increased, even before the grains displayed mas-

sive physical fracture. Figure 13 shows two Figure 13. M30 Propellant Grains

typicalgrains that were compressed to 20% strain Compressed to 20% Strain at 20 OC
(1-mm Divisions)

at 20*C. These grains show that the extent of

visible fracture damage was small. Even so, the area profile showed the effects of increasingly brittle

behavior.

6. CONCLUSIONS

A correlation has been established that relates fracture-generated surface area to a mechanical

parameter called the failure modulus and the end-state strain of uniaxially compressed propellant

grains. The failure modulus has been shown in other studies to demonstrate a time-temperature

equivalency that expands the application of these results to a wide variety of ballistic problems.

The effective surface area profile has been shown to be directly proportional to the logarithm of

the failure modulus for each of the end-strain conditions tested, and the parameters determined in
13



these linear correlations (the constant and coefficient of each relationship) have been shown to be

linear functions of the strain. The result of this is a method by which an equivalent surface area profile

can be generated, based on the level of strain and the established failure modulus. It was also shown

that the fracture process can have a demonstrated effect on the surface area profile even when most

of the damage is from plastic flow. At high temperatures and low end strains, plastic deformation

reduced the specific surface area. As more fracture damage occurs, the profile shows greater area

available at low fraction burned and less progressivity. These results have wide application in the

modeling and propellant development communities.

7. FUTURE STUDIES

This is the first propellant to undergo this series of tests. To verify the conclusions reached here,
the test sequence should be repeated at other strains to see how those results compare with the ones

presented here. If the conclusions are affirmed, similar methods of determination should then be

performed for the three other major groups of propellants, i.e., single and double base propellants,

and the nitramine composite formulations. This, along with the time-temperature equivalency

established for each of these groups, should provide a valuable tool to predict the augmentation of

pressure generation attributable to fracture damage in ballistic systems.
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